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Introduction

The modeling and prediction of soccer matches have raised increased popularity among the statistical
community in the past years and have become a major research area within the field of sports statistics (cf.
Groll and Schauberger (2019)). In the literature, there are two main directions for modeling match results.
The first approach, which will be the focus of this review is to model the score of the competing teams in
various forms. The second approach is to model match outcomes directly, i.e. to model win, draw or loss
probabilities.

The main model class used for modeling the score of teams is Poisson regression. In general, the idea is to
model the number of goals scored by each competing team in a single football match. That is we consider
two variables, Xij ∼ Po(λij) and Yij ∼ Po(µij), where Xij denotes the goals scored from team i playing
against team j and Yij the goals scored from team j when playing against team i. The trick is now to find an
accurate estimate for the expected number of goals of λij and µij .

In the simplest case, conditional on the teams’ abilities or covariates such as economic and sportive factors of
the country, the two Poisson distributions are treated as independent (Groll, Schauberger, and Tutz (2015)).
Many approaches however allow for dependence between the two score variables. A commonly used approach
is the bivariate poisson model initially proposed by Karlis and Ntzoufras (2003), which is able to account for
(positive) dependencies between the scores. In a closely related approach, such models are used as ranking
methods for football teams. In this sense, no covariates are taken into account, but rather (defensive and
offensive) ability parameters are estimated from a large set of matches, for an overview see Ley, Wiele, and
Eetvelde (2019). The advantage of such an approach is that there is no need for collecting a potentially huge
amount of covariates. Furthermore, the ranking approach and the pure covariate approach can easily be
combined.

A fundamentally different approach for modeling the score is to use a machine learning algorithm such as
random forests. Schauberger and Groll (2018) investigated the predictive potential of random forests in the
context of international football matches and compared different types of random forests on data containing
all matches of the FIFA World Cups 2002–2014 with conventional regression methods for count data, such as
the Poisson models from above.

Finally, it can be shown, that the combination of the random forest with the ability estimates derived from
Poisson models yields improved overall results. Groll, Ley, Schauberger, and Eetvelde (2019) show the superior
performance of their so-called hybrid random forest model over typical regression approaches.
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From Poisson Regression to Random Forests

Independent Poisson Models

In this class of models, the single scores are used as response variables and (conditionally on the covariates)
a Poisson distribution is assumed. As mentioned in the introduction a crucial assumption is conditional
independence of the two scores of one match given covariates. Each score is treated as a single observation so
that per match there are two observations. Accordingly, for n teams the respective model has the form

Yijk | xik, xjk ∼ Po (λijk) ,

log (λijk) = β0 + (xik − xjk)⊤
β + z⊤

ikγ + z⊤
jkδ.

(1)

Here, Yijk denotes the score of team i against team j in tournament k, where i, j ∈ {1, . . . , n}, i ̸= j. The
metric characteristics of both competing teams are captured in the p-dimensional vectors xik, xjk, while
zik and zjk capture dummy variables for the categorical covariates separately for the considered teams and
their respective opponents (cf. Schauberger and Groll (2018)). For these variables, it is not sensible to build
differences between the respective values. Furthermore, β is a parameter vector which captures the linear
effects of all metric covariate differences and γ and δ collect the effects of the dummy variables corresponding
to the teams and their opponents, respectively. Groll, Schauberger, and Tutz (2015) extend the formulation
of equation (1) to allow for team attacking and defensive ability parameters of the teams such that1

yijk | xik, xjk ∼ Pois (λijk)

log (λijk) = β0 + (xik − xjk)⊤
β + z⊤

ikγ + z⊤
jkδ + atti − defj .

(2)

Now in the presence of a high dimensional set of covariates, a usual procedure is to perform regularized
estimation, i.e. to apply penalization in the estimation procedure in order to reduce the variance of the
parameter estimates and provide better predictive performance than regularized estimators. Thus in order
to estimate the parameter vector θ = (β, γ, δ) an additional penalization term is added to the likelihood
function. In case of ability parameters att = (att1, . . . , attn) def = (def1, . . . , defn) added as in (2), add
extra constraint termed group lasso penalty is added, such that both effects corresponding to the same team
form a group of parameters. In group lasso, groups of parameters can be defined where variable selection is
then applied to the group as a whole. Therefore, such a penalty shrinks whole groups of parameters to 0.
Thus for estimation, instead of the regular likelihood l (β0, θ) the penalized likelihood

lp (β0, θ) = l (β0, θ) + λP
(
β0, θ̃

)
(3)

is maximized, where P
(
β0, θ̃

)
is either the ordinary lasso penalty (for equation (1)) or the a penalty of the form

P
(
β0, θ̃

)
= P (β0, θ, att, def) =

p̃∑
v=1

|θv| +
√

2
n∑

i=1

√
att2

i + def2
i (4)

for equation (2). In both cases λ is a tuning parameter determined by cross-validation.

Poisson Ranking Models

In this section, we describe how Poisson models can be used to obtain rankings that reflect a team’s current
ability. As mentioned in the introduction and seen from equation (2), there is a close connection to independent
poisson models of section . In the most simple case, one could simply ignore the exogenous variables in the
model (2). Such ranking models are appealing for their simplicity (i.e. no need for possibly tedious data
collection) as well as for their nice interpretability in terms of being able to compare teams. Ley, Wiele, and

1Note that actually in their work Groll, Schauberger, and Tutz (2015) did not include the categorical covariates, i.e. they do
not estimate γ and δ. However, as shown in Schauberger and Groll (2018) they can be added quite straightforwardly, after
having taken care of identifiability issues.
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Eetvelde (2019) provide a nice overview of possible models in this category and we will follow Groll, Ley,
Schauberger, and Eetvelde (2019) and describe the ranking models in term of the most elaborate model
namely the bivariate Poisson model from Karlis and Ntzoufras (2003). While these models on their own
possess only moderate predictive abilities, the main idea here is to provide a ranking of teams as well as team
strength parameters, which may help in predicting match outcomes when using them in a hybrid model.

The bivariate Poisson model can be formalized in the following way. If we have M matches featuring a total of
n teams, we write Yijm the random variable number of goals scored by team i against team j (i, j ∈ {1, . . . , n})
in match m (where m ∈ {1, . . . , M} ). The joint probability function of the home and away score is then
given by the bivariate Poisson probability mass function,

P (Yijm = z, Yjim = y) =
λz

ijmλy
jim

z!y! exp (− (λijm + λjim + λC))

·
min(z,y)∑

k=0

(
z
k

) (
y
k

)
k!

(
λC

λijmλjim

)k

,

(5)

where λC is a covariance parameter assumed to be constant over all matches and λijm is the expected number
of goals for team i against team j in match m, which we model as

log (λijm) = β0 + (ri − rj) + h · I( team i playing at home) , (6)

where β0 is a common intercept and ri and rj are the strength parameters of team i and team j, respectively.
Since the ratings are unique up to addition by a constant, we add the constraint that the sum of the ratings
has to equal zero. The last term h represents the home effect and is only added if team i plays at home. Note
that we have the independent Poisson model if λC = 0.

Estimation of strength parameters is traditionally again done via maximum likelihood. However, in order to
account for the fact that team strengths vary in time and we are mostly interested in the actual strength
before a tournament, Groll, Ley, Schauberger, and Eetvelde (2019) suggest using a weighted maximum
likelihood approach. In this way, they adjust the importance of data points, i.e. matches, for estimation of
the strength parameters, such that more recent matches have more influence on the estimation. Furthermore,
another weight is placed on the type of match that is played such that important matches (e.g. tournament
elimination matches) are given more weight than less relevant matches (e.g. friendly matches). The overall
weighted likelihood then reads

L =
M∏

m=1
(P (Yijm = yijm, Yjim = yjim))wtype,m·wtime,m , (7)

where yijm and yjim stand for the actual number of goals scored by teams i and j in match m. The explicit
formulations of the weight functions wtype,m and wtime,m can be found in Groll, Ley, Schauberger, and Eetvelde
(2019) and are based on findings from Ley, Wiele, and Eetvelde (2019). The values of the strength parameters
r1, . . . , rn, which determine the resulting ranking, are computed numerically as maximum likelihood estimates
on the basis of historic match data. These parameters also allow to predict future match outcomes thanks to
the formula (6).

Random Forest Models and Hybrid Forms

We finally turn to a completely different class of models, namely random forests. In this brief review, we
refrain from revisiting the general ideas of random forest and refer the interested reader to Schauberger and
Groll (2018), who provide an overview as well as further references. They also discuss how such models are
used for modeling football matches. As random forests are a very flexible class of machine learning models,
they can be used in various ways, however in order to concur with the rest of this summary, we only discuss
their usage for predicting the number of goals scored.
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Since the response variable of interest is the metric variable number of goals, regression trees are used for
predicting the expected number of goals. Schauberger and Groll (2018) mention two different variants of
random forests, one being the classical algorithm as introduced by Breiman (2001), the other one being
presented by Hothorn, Hornik, and Zeileis (2006), which uses the principle of conditional inference to construct
the final trees. The advantage of the latter variant of random forests is that they avoid selection bias in cases
where the covariates have different scales, e.g. numerical vs. categorical with many categories. Schauberger
and Groll (2018) further show that the conditional random forests also result in better predictive performance
for the football data. Finally, in order to use the estimates of the expected number of goals from the random
forests for prediction of match results or tournaments, the predicted value from these models is used as an
estimate for the event rate λ of a Poisson distribution. The idea is thus similar to the previous sections,
i.e. two independent Poisson distributions (conditional on the covariates) for both scores are used to model
match outcomes.

Groll, Ley, Schauberger, and Eetvelde (2019) extend the idea of using random forest by combining ranking
models as described in section and the random forest idea resulting in what they call a hybrid random forest
model. They propose to use the ranking approach to generate a new (highly informative) covariate that can
be incorporated into the random forest model. It turns out that the additional strength variable, although
seemingly similar to exogenous variables such as the FIFA ranking of teams, is much more informative.
Further, Groll, Ley, Schauberger, and Eetvelde (2019) show that their hybrid approach leads to superior
predictive performance when modelling match outcomes.

Application to World Cup Data

Various versions of the hybrid random forest have been applied to major tournaments of men’s and women’s
football in Groll, Ley, Schauberger, and Eetvelde (2019), Groll, Ley, Schauberger, Eetvelde, and Zeileis (2019)
and Groll et al. (2021). We briefly describe the main approach as presented in Groll, Ley, Schauberger, and
Eetvelde (2019). In order to model and predict tournament outcomes such as the FIFA world cup 2018, the
idea is to train a hybrid random forest only on available data from past world cups. Information from other
international matches such as friendly matches, qualifier matches, or matches from other tournaments is
only indirectly included from the estimated ability parameters that are fed into the random forest prediction
model.

Based on the hybrid random forest fitted on the data of 4 past world cups (FIFA world cups 2002–2014),
the authors simulated the FIFA world cup 2018 100,000 times. These simulations allowed to compute
tournament-winning probabilities for all participating teams as well as the most probable tournament course.
A retrospective analysis of the world cup shows that the performance of the hybrid random forest is able to
outperform other approaches such as pure ranking methods, different hybrid variants (such as a lasso hybrid
glm) and that the model is even able to outperform bookmaker betting odds.

Discussion

In his talk A hybrid random forest approach for modeling and prediction of international football matches,
Andreas Groll gave an overview of the derivation and evolution of an approach to model international football
tournaments. The so-called hybrid random forest model combines early works on ranking football teams using
Poisson models and machine learning algorithms such as random forests. The author showed that the hybrid
approach performs better than simple approaches and that incorporating team abilities via ranking models
are very informative covariates for the prediction of matches.

The hybrid approach can be nicely extended in such a way that more covariates from other statistical models
can be incorporated. Groll et al. (2021) for example add two hybrid variables derived from a bookmaker
consensus model, see e.g. Leitner, Zeileis, and Hornik (2010), and a plus-minus rating model, see e.g. Hvattum
and Gelade (2021). Moreover, an interesting extension mentioned is to compare the random forest with other
state-of-the-art machine learning algorithm such as gradient boosting.
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Finally, an interesting application is to use similar ideas for women’s football tournaments. While Groll, Ley,
Schauberger, Eetvelde, and Zeileis (2019) intend to adopt the same methodology to the FIFA women’s 2019
world cup it is unclear whether it is sensible to imitate the procedure for women’s football. Michels, Ötting,
and Karlis (2023) for example provide an interesting alternative to classical poisson models for deriving ability
parameters for women national teams. Their work is based on the observation that in women’s football,
scorelines have different characteristics than in men’s football. This could be nicely incorporated in order
to provide a more accurate hybrid covariate for the hybrid random forest model. Furthermore, it is not
clear whether in women’s sport there are different influential exogenous variables that need to be taken into
account. A survey analyzing the covariate effect for women’s football could provide more interesting insight
into this fact and this could benefit the prediction models described in this summary.
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