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Abstract. The generalized lasso is a popular model for ranking com-
petitors, as it allows for implicit grouping of estimated abilities. In this
work, we present an implementation of an adaptive variant of the gen-
eralized lasso penalty for logistic regression using conic programming
principles. This approach is flexible, robust, and fast, especially in a
high-dimensional setting. The methodology is applied to sports data,
with the aim of ranking soccer players based on their contribution to
possession sequences.
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1 Introduction

In many fields, e.g. in economics, scientometrics, or sports, there is an innate
interest in ranking competitors. However, given the multi-dimensionality and
the difficulty of the problem, usually partial rankings, i.e. rankings that allow
for groups, are preferred over total rankings. To serve such ranking mentalities
and account for potential over-interpretation of insignificant differences between
abilities of competitors, Masarotto and Varin (2012) propose the ranking lasso
given as the solution of the problem

min
β

ℓ (Y ;X,β) + λ

N∑
i<j

wij |βi − βj |, (1)

where wij are pair-specific weights. The penalty term in Eq. (1) is a variation of
the lasso penalty that allows for grouping of the estimated abilities of competitors
into several equivalence classes. This problem can be more generally written as

min
β

ℓ (Y ;X,β) + λ||Dβ||1. (2)

Here the matrixD ∈ Rm×p represents some structural behavior of the coefficients
β. In principle, ℓ(Y ;X,β) may represent any convex loss function, however, for
our purpose, we consider the (negative) log-likelihood function for the binomial
response variable Y in the usual logistic regression framework. For squared loss,
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Eq. (2) is often termed generalized lasso and encompasses various special cases
(see Tibshirani and Taylor (2011) for details).

In general, there are many ways to solve the above problem. Masarotto and
Varin (2012), e.g., derive an augmented Lagrangian method to solve the prob-
lem. However, when incorporating specific ranking-based structures on the coef-
ficients, the dimension of D quickly increases, and consequently such algorithms
do not scale reasonably well. In this paper, we present an approach using interior
point methods and modern conic programming principles. Such an approach has
been proven to be reliable for similar convex problems in Schwendinger et al.
(2021) and specifically works well in the context of high-dimensional D. Fur-
thermore, we discuss an application for ranking soccer players, where the matrix
D has a particular and high-dimensional structure, which is distinct from the
classical ranking lasso case of Eq. (1).

2 Adaptive generalized logistic lasso via conic
programming

We rewrite Eq. (2) and consider the adaptive generalized logistic lasso (AGLL)
problem given as

min
β

−
( n∑
i=1

yi log(hβ(xi)) + (1− yi) log(1− hβ(xi))
)
+ λ

m∑
j=1

wj |Dj |, (3)

with logistic function hβ(x) = 1/
(
1 + exp(−β⊤x)

)
. In this case, Dj is the j-th

component of Dβ, with D ∈ Rm×p.
In order to use conic programming techniques to solve Problem (3), we first

define a conic program (CP) as:

minimize aT0 x

s.t. Ax+ s = b, s ∈ K,
(4)

where the set K is a composition of simple convex cones. Any convex optimiza-
tion problem can be reformulated into a conic program by expressing it in its
equivalent epigraph form. Specifically, Eq. (3) can be reformulated in the follow-
ing way1:

min
(r,β,s,t,z1,z2)

n∑
i=1

ti + λr

s.t. (zi1, 1, ui − ti) ∈ Kexp,

(zi2, 1,−ti) ∈ Kexp,

zi1 + zi2 ≤ 1, i = 1, . . . , n,

− sj ≤ Dj ≤ sj , j = 1, . . . ,m,

r − w1D1 − · · · − wmDm ≥ 0.

(5)

1 Note that there are other equivalent variants of rewriting the objective function in
epigraph form, especially for the likelihood part (see e.g. Schwendinger et al. (2024)).
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In the above formulation, the variables r,β, s, t, z1, z2, and u are auxiliary vari-
ables. The initial problem (3) is thus rewritten as a conic programming problem
as in Eq. (4) on an augmented set of variables Θ = (r,β, s, t, z1, z2). Note that
the formulation as CP only requires two distinct simple convex cones, namely
the exponential cone for the first two lines of Eq. (5) and the linear cone for lines
3-5. These are defined as

Kexp = {x ∈ R3|x1 ≥ x2 exp(x3/x2), x1 > 0, x2 > 0}, and

Klin = {x ∈ R|x ≥ 0}
(6)

respectively. We omit further details on the reformulation procedure in this short
paper and refer to Boyd and Vandenberghe (2004) for more information on
rewriting convex problems into their epigraph forms.

There are various advantages to using the presented conic approach as op-
posed to using other methods, such as augmented Lagrangian procedures. First,
a wide range of problems can be solved with only a few number of convex cones.
For example, many of the most popular models from the GLM family can be
modeled with only 3 types of cones: linear, second-order, and exponential cone
(Schwendinger et al. (2024)). Furthermore, extensions to penalized versions of
GLMs are straightforward by adding cone constraints (e.g. for the lasso penalty,
only additional linear cones are required). This makes the conic approach flex-
ible and easily extensible to specific situations. Second, from an algorithmic
point of view, the conic solvers do not rely on specific starting values and pro-
vide reliable results. That is, when the algorithm signals success in finding an
optimal solution, one can be very certain that the found optimum is a global
optimum (Schwendinger et al. (2021)). Finally, recent advances in conic pro-
gramming have led to the development of a variety of solvers, which routinely
solve high-dimensional conic problems to proven optimality.

Problem (5) can be solved using a convex optimization solver of choice. The
only requirement on the solver is that it can handle the above two types of convex
cones. In R, there is a range of suitable solvers available via the optimization
infrastructure ROI (Theußl et al. (2020)). We develop an R routine leveraging
the flexibility of ROI.

Similar to other works (Zou (2006), Masarotto and Varin (2012)), we consider
an adaptive variant, where weights wj are placed on the penalty structure of
the components, to avoid inconsistency and reduce bias in the estimation of
the effects. We follow Masarotto and Varin (2012) and select the weights to be
inversely proportional to the maximum likelihood estimates with a small ridge
penalty

wj =
∣∣∣Djβ̃ϵ

∣∣∣−1

, β̃ϵ = argminβ

{
−ℓ(β) + ϵ

∑
i

β2
i

}
. (7)

Therefore, if the structural differences in the effects (represented by the ma-
trix D) are small, a stronger penalization on the structure for these effects is
employed. Finally, in order to select the tuning parameter λ, we compute the
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solution of the AGLL for a sequence of λ-values and minimize an AIC-type
criterion of the form

AIC(λ) = −2ℓ(β) + 2enp(λ). (8)

This idea follows Tibshirani and Taylor (2011), where enp(λ) is estimated as the
number of distinct groups formed by a certain λ.

3 Simulation

Fig. 1. Left: Comparison of runtime (in seconds) of different solvers. Right: Comparison
of differences in negative log-likelihood between the best model and each other model.
Displayed are 50 different runs of the simulation setup.

We briefly illustrate the efficiency of our approach in a simulation study. We
simulate n = 5000 data points from a classical logistic regression model with
p = 50 covariates. That is, the response variable is drawn from

yi|xi1, . . . , xim ∼ Ber(πi), m = 1, . . . , ⌊2
3
p⌋, (9)

where πi = 1/
(
1+exp(−β⊤xi)

)
. The covariate matrix X is drawn from a Gaus-

sian distribution and the coefficients are set such that 4 groups are present,
and only 2/3 of the covariates are relevant, i.e. affect the outcome. In total,
we compare 4 solvers, 3 of them are conic solvers. First, an implementation
of the commercial solver from MOSEK via the Rmosek-package (MOSEK Aps
(2022)). The other two leverage ROI, where we again use MOSEK via ROI as well
as the open-source solver ECOS (Domahidi et al. (2013)). Finally, to compare
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the conic solvers to other approaches we use the constrOpt function from the
alabama-package, which implements an augmented Lagrangian adaptive barrier
minimization algorithm (Varadhan (2023)). We evaluate the methods based on
runtime, as well as their ability to find the optimal solution for the objective
function.

Figure 1 shows the results of our short simulation. It can be seen that the
conic solvers are much more efficient in terms of runtime than the augmented
Lagrangian solver (left panel of Figure 1). Using ROI produces a slight overhead,
as seen by comparing the usage of the MOSEK solver directly versus via the
package. However, the flexibility of ROI allows for easy usage of solvers like
ECOS, which is slower than the commercial solver, but only by a small amount.
It is important to mention that in our simulation with p = 50, the dimension
of D is 1275 × 50. Compared to our application below, this is a rather small
problem. Already in this setup, the runtime difference between conic solvers and
the augmented Lagrangian method is drastic. In terms of finding the optimal
solution (right panel of Figure 1) the conic solvers also outperform the constrOpt
solver, with no notable difference between ECOS and MOSEK.

4 Ranking in sports

Fig. 2. Strength coefficients for direct (left) and off-ball (right) involvement. Selected
groups are displayed with the corresponding group size. Groups of only one player are
displayed by the name of the player.

We apply the AGLL to possessions in soccer, with the aim of ranking play-
ers based on their contributions to scoring goals. A possession is defined as a
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sequence of consecutive on-ball events, which ends either by the opponent team
gaining possession or by an action of the referee. For each possession, two kinds
of information are observed. First, we record which player is actively involved in
a possession, and second, we record which player was on the field (offensively and
defensively) during a possession, but not directly involved. This data structure
allows to separate effects of being part of a possession, from effects of off-ball ac-
tions, both of which have substantial impact in soccer. To be more concrete, the
units of observation are possessions, where each possession can end in a goal or no
goal (binary outcome). The player configuration for each possession is collected
in our design matrix X. In our data set, we have 422 players, and therefore 844
total columns of direct and indirect involvements. For ranking players, it then
makes sense to differentiate between direct and indirect (off-ball) involvement.
That is, we do not want to consider the classical ranking lasso penalty, where
effects of direct and indirect involvement would be compared to each other. In-
stead, the penalty matrix D should account for the fact that we want to compare
the direct effects of one player only to the direct ones of the other players and
the same for indirect effects. This results in the following form for D:

D =

(
Ddir 0
0 Dindir

)
. (10)

For each of the two components, we are interested in applying a ranking penalty.
That is, Ddir = Dindir, where

Ddir = (A,B,C) =

 A1 B1 C1

...
...

...
ANdir−1 BNdir−1 CNdir−1

 . (11)

The Ai are matrices of zeros of dimension (Ndir − i) × (i − 1), each Bi is a
vector of ones of length Ndir, and each Ci is the negative identity matrix of
dimension Ndir − 1. In our example Ndir = 422, and thus the row-dimension of
Ddir is 88831. Therefore, the total dimension of D is 177662× 844. It is evident
that an efficient procedure is necessary to solve the AGLL problem, and our
conic programming approach works well and fast in such scenarios. The results
of our analysis are displayed in Figure 2. These are in line with the intuition on
ranking soccer players. They reflect the difficulty of ranking soccer players while
simultaneously emphasizing the necessity of partial rankings, as most players are
grouped in similar strength groups, and only a few stand out.

5 Summary

In this work, we consider the generalized lasso penalty for logistic regression.
We transform this convex problem into its conic form and develop a framework
for solving it using conic programming. The presented approach is flexible and
easily extensible and simulations show that it is fast and robust. Finally, we use
the methodology to rank soccer players into strength groups.
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