Uncovering the Depths of Gradient Boosting

A Hopefully Comprehensive Write-Up (Mainly for me I guess...)

Robert Bajons

Motivation

I found it quite intricate to wrap my head around the full concept of gradient boosting as well as the
fine differences between the original approach of Friedman (2001) and the approach of Chen and
Guestrin (2016) for their XGBoost package. Thus this work should document my comprehension
of this topic as well as provide space to annotate any unclear parts. It may serve as a resource for
understanding, coding (mainly in R) and possibly extending the gradient boosting framework.

A Brief History

Note: This is by no means an exhaustive history of existing literature, but it gives an overview of
certain very influential or interesting/helpful papers on boosting.

e First works from a computational learning viewpoint (not yet generalized): Freund (1995),
Adaboost by Freund and Schapire (1997).

e Generalizations of the Boosting Framework:

Approach 1: Statistical view of Adaboost by Friedman et al. (2000), General Boosting Idea and Algo-
rithm by Friedman (2001) and extensions in Friedman (2002), Comprehensive summary
by Ridgeway (1999a,1999b).

Approach 2: Boosting from an Optimization viewpoint by Mason et al. (1999,2000).

Both approaches mathematically revised and to some extent unified more recently by Biau
and Cadre (2017).

e A lot of in the 2000s and 2010s, impossible to cite all so omitted for the moment.

e Novel boosting approaches and recent extensions: XGBoost Chen and Guestrin (2016), accel-
erated gradient boosting Biau et al. (2018), gradient and newton boosting in an unified and
mathematical framework Sigrist (2021), Grabit model: a specific model for class imbalance
Sigrist and Hirnschall (2019).

Predictive Learning Problem

We mainly use the problem formulation given by Friedman (2001). Consider having a dataset of
size N coming from a random output variable y and a set of d random input variables . The
goal is to obtain an estimate or approximation F'(z), of the function F*(z) mapping « to y, that
minimizes the expected value of some specified loss function L(y, F/(x)) over the joint distribution
of all (y, x)-values:

Fr = arg;ninIE[L(%F(w))]. (1)

In typical data science / machine learning problems, the estimation focuses on minimizing the loss
over the given set of training data of (y,x) available, i.e. solving the empirical analogue to the
modified version of equation (1):

F* = arg;ninEy‘m[L(y, F(x))|x]. (2)

Solving equation (2) is equivalent to solving (1), since the loss function L is usually non-negative and
we can use the law of total expectation to rewrite (1) as an expectation w.r.t. of the conditional
expectation in (2).

Typical loss functions used in the predictive learning problem include the squared error! for
regression or the negative binomial log-likelihood for classification.

Optimizing a Function

To solve the above problem, one typical approach would be to parametrize F(x), such that is
belongs to the class of functions F(x, P). where P = {P;, P»,...}. One simple example would be
to choose F as a linear function in the parameters, i.e. a linear regression F(x, P) = PTxz?. We
will later come back to this simple example. Using a parametrized version of F' the optimization
problem is changed such that we are searching for?

P* = arg;ninE[L(y, F(x, P))] = arg;nin O(P). (3)

and then
F*(x) = F(x, P*). (4)

In lack of an explicit solution one usually has to resort to numerical optimization in order to solve
the problem equation (3). Friedman states that “this often involves expressing the solution for the
parameters in the form” of a sum, starting with an initial guess successively adding increments
(“boosts”). In essence this refers to Newton type methods, where one starts with an initial guess
and then iterates via a specific rule to find a better approximation of the extremum by following a
specific rule. These methods try to use a clever approach to find the direction in which one should
move to get to the extremum. In a one dimensional case (see below), this is rather simple as there
are only 2 ways to go (left or right, imagine a simple plot), however in higher dimensions there are
infinite possible direction to move (360 degree radius, imagine an z,y plane in the two-dimensinal
case).

The most traditional Newton method (also called Newton Raphson method) for finding a one
dimensional extremum use the following iteration

Tnt+l = Tp — f/(xn) (5)

Thus the final value for the extremum could in this case be expressed as sum of the increments:
M
x* :$0+ZCEZ‘, (6)
i=1

with a starting value zg and &; = — ;,((?:11)) and maximum number of iterations M. This can be

generalized to higher dimensions by using the gradient and the hessian, where finding the search
direction (i.e. the increments) amounts to solving a linear system of the form:

Hf(xn)pn = =V f(x,). (7)

IThe sample analog of the expected squared error loss is the well known mean squared error (MSE)
2Usually the parameters in linear regression are denoted by f...
3Typically again consider sample analogue of the modified equation (2).

Add some
notes on loss
functions!!

Thus the iteration amounts to

Tptl = Ty + Pn. (8)

and we obtain the solution as sum of increments
M
Z* :ngeri. (9)
i=1

The main idea for any kind of Newton-type algorithm is based on Taylor series approximation. In
essence, the idea is that instead of optimizing the original function, one tries to optimize a Taylor
approximation of the function up to a certain order (usually order 2 is sufficient) at a starting value
Zk—1. For more details a more thorough analysis of non linear optimization books is required (see
e.g. Griva et al. (2008), chapters 2,11,12).

Steepest Descent

The steepest descent, sometimes also called gradient descent, is one of the simplest Newton-type
methods out there. The basis of these approach is that the gradient of a function provides the
direction of the steepest ascent of the curve®. In order to find the minimum?® one idea is to move
in the direction of the maximal decrease, i.e. the negative of the gradient. If the function is well
behaved and the step size is not too big one should with every iteration move to a value that is
lower than the original value. This is the most basic implementation of a newton method, which
compared to the Newton Raphson method describe above only takes gradient information (but not
the hessian) into account.

In order to solve the initial problem as given by equation (3), we thus need to compute the
gradient and evaluate it at the value of the previous step of the iteration:

9n = V(I)(P)|P:P"71 (10)

and evaluate it at each step at P,_;, where we start with some starting value Py and P, =
P,_; — ¢,%. Thus the each P, can again be written as sum:

Pn = Zpi, (11)
=0

where pg is some starting value and p; = —g;. Usually the steepest descent algorithm is combined
with a line search algorithm, such that the step p, and P, are given by

Pn = —PnGn, Tesp. Pn =P, 1 — pngn. (12)
The optimal value of p at each iteration is derived by solving the Problem

pn =argmin ®(P,,_1 — pgn). (13)
p

Example

We illustrate the steepest descent algorithm in the context of a predictive learning problem for
probably the most common simple parametrized function F, the linear regression. Note that for
the case of linear regression, an explicit solution to the least squares problem, which is equivalent
to minimizing the MSE is available, so from a computational point of view it would not make sense
to use the steepest descent algorithm. However it is a good example to visualize how the method
would work.

4Hint: A nice intuitive explanation can be found at wikipedia. The proof is quite straightforward using the
definition of the directional derivative

5Optimization here mostly refers to minimization as maximization can be achieved by minimizing the negative
of the function.

6We stick to the notation used by Friedman and describe the steepest descent method with respect to P, one
would usually use z, but in our case this would clash with the notation above.

https://en.wikipedia.org/wiki/Directional_derivative

S i 3
Simulate data
HARBARRARRU AR BRURR LR RA R LR B N

set.seed(123)
x1 <- rnorm(500,10,5)
x2 <- rnorm(500,1,1)

y <= 1.5%x1-3*x2+rnorm(500)

B
Fit linear Model
HARBARRARRUBRR AR RR LR AR LB GH

mod <- Im(y ~ x1+x2-1)

MSE <- function(beta,y,x1,x2){
mean ((y-(beta[1]*x1+beta[2]*x2))2)

}

grad <- function(beta,y,x1,x2){
c(mean (-x1%2* (y- (beta[1]*x1+beta[2]*x2))) ,mean (-x2*2* (y-(beta[1] *x1+beta[2]*x2))))

}

R et

Gradient Descent with line search
without line search no convergence!!
line search taken from Wikipedia
e

bold <- c(1,1)
#bold <- c(1.523738,-3.527437)
eps = 1
counter = 1
while(eps > 10~ (-7)){
g <- grad(bold,y,x1,x2)
alpha <- 1
line search part wvery important
while (MSE(bold,y,x1,x2)-MSE(bold-alpha*g,y,x1,x2) < -alpha/4*crossprod(bold,g)){
alpha = alpha/2
}
bnew <- bold - alpha*grad(bold,y,x1,x2)
eps <- abs(MSE(bnew,y,x1,x2)-MSE(bold,y,x1,x2))
#eps <— maz(abs(bold-bnew)) ## choose some stopping criterion
#eps <- abs (MSE(bnew,y,zl,z2))
bold <- bnew
counter = counter+1
if (counter %% 10000 == 0){
cat("prec = ",eps," round = ",counter," MSE = ", MSE(bnew,y,x1,x2))

}
}

##
Results from steepest descent:
prec = 0 round = 68 MSE = 1.013114

coeffl = 1.489883 coeff2 = -2.812129
##

##t

Linear Model (least squares output):

##

Call:

Im(formula =y ~ x1 + x2 - 1)

##t

Coefficients:

#Hit x1 x2

1.502 -2.972
MSE for least squares: 0.9811374

The above code provides a way for using the steepest descent algorithm in a linear regression
setup (without intercept). A few important notes are necessary:

e The result of the gradient descent algorithm are close to the linear model results, however
least squares provides a more accurate result (in terms of MSE and when comparing to the
real values).

e The steepest descent algorithm only works when using an appropriate line search algorithm
otherwise we overshoot the steps length and the algorithm does not converge.

e The result of the steepest descent algorithm might be improved by adjusting the stopping
criterion, as well as the line search algorithm (through the choice of criterion and adjustment
of alpha in each line search step).

Optimization in Function Space

When using a non parametric approach to, one could still try to solve problem (2) using similar
arguments as above. Instead of considering parameters of a function one would consider the function
F(x) at each point as a parameter and use a stepwise updating procedure starting with an initial
value fo(x). Using a steepest descent approach one would thus update the estimate F at each step
m by

Fm<w> = mel(w) — PmGm, Gm = v(I)(I;)lF:Fm,y

The optimal step length p would again be determined by performing a line search similar to equation
(13). Thus F,,(x) could again be expressed as a sum

where f;(x) = —pig;.

As pointed out by many authors (Friedman (2001), Ridgeway (1999b), Hastie et al. (2009)),
this procedure is far from optimal in a finite data setting, where all estimation has to be done on
the sample analog of equation (2), since we would only estimate the function on the set of data
points available. Thus using this procedure would only be desirable when the goal would be to
minimize the loss on the training data set. However one is usually interesting in predictions for
unseen values of x, i.e. generalization of the function to to new data outside of the training set.

Gradient Boosting and its Implementations

Gradient Boosting build on the ideas described in the previous section. Having a training data set
(x,y)N , at hand one is interested in estimating a function F* by minimizing the sample analog of
equation (2):

N
F* =argmin Y [L(y, F())]. (14)
F 4
=1
To do so, we take the “natural”” approach of fitting additive expansions in a greedy stagewise

process, i.e. the estimate for optimal function can be written as sum

) M
F(x) = Z Bmh(x, am), (15)

where each component of above sum is derived at each stage of the process. Note that we have
already expressed each term of the sum in a specific form. This is the usual approach in gradient
boosting, where each component is assumed to be a member of a class of function usually termed as
“weak learners” (Friedman (2001)) or “basis functions” (Hastie et al. (2009)), i.e. simple function
that on its own do not possess great predictive power. The idea of using additive expansion is not a
unique characteristic of gradient boosting, but rather is a very common approach in many machine
learning techniques, e.g. (single layer) neural networks, regression splines, etc. (cf. Hastie et al.
(2009)).

Parameter optimization in such a model with respect to some loss functions amounts to solving
the problem

N

M
min » L(y, Z Bmh(x, am)). (16)
Ba “
=1 m=1

Solving the above optimization is usually infeasible, especially for highly non linear loss functions.
To avoid solving the expensive problem the idea is to use a simple alternative, where a forward
stagewise algorithm is employed, such that each weak learner is fit sequentially. Thus, at each
iteration, the new component of the sum is estimated without affecting/modifying the coefficients
of previous terms. The algorithm therefore only needs to fit a single base learner at each iteration,

which can be computationally much more efficient. For each m = 1,..., M one solves the problem
N

min Ly, Fro_1(x) + Bh(x,am)). 17

35 L0 Fe1 (@) + Gh(2.) a7)

For squared error loss the above problem leads to fitting a regression tree to the current residuals®,
as can be seen by plugging in:

N N
it Y~ L0y, Fn(2) + S am)) = 190 3 (4 = s () = Sh(@) (18)
i=1 Toi=1

Solving problem (17) can be quite difficult as well for a number of loss functions. This is where the
usual implementations try to find a clever way to come up with a generalized solution that works for
any (possibly new) data point . While there are different ways to come up with a clever approach
for solving (17) (as we will see further on), the general idea is the same. At each step the model
selects a tree that locally minimizes an approximate of the loss function (linear approximation for

"Natural in that sense means that it comes from the previously derived concepts for optimizing functions.
8Note that fitting a regression tree is usually (by default) done by minimising squared error loss (similiar to linear
regression), thus this approach is in some sense very intuitive. See also the section on decision trees below.

gradient descent, quadratic approximation for Newton descent as in XGBoost), i.e. the procedure
is analogous to a Newton type method.

To be more concrete, in its most general form the initial approach by (Friedman (2001)) uses
at each step m a linear approximation of the loss function at the point F,,_1, i.e. it searches for
the step direction that minimizes the loss under the constraint, that the new step direction is a
member of the class of weak learners. As already mentioned the “best” step direction is in this case
the data-based analogue of the negative gradient, evaluated at F,,_,. However, as we are restricted
to a class of weak learners and we want to generalize the gradient information to values of that
are not contained in the training data set, the idea is to choose the weak learner h(x,a), such that
evaluated at training values it is most parallel to the negative gradient. Thus we simply regress the
weak learner on the negative gradient using a least squares criterion”:

N
min Z(—gm(:ci) — h(zs,a)). (19)
i=1
Similarly to basic gradient descent the above step is accompanied by a line search

N
m/jnZL(yi,Fm—l(w) + ph(z; am)) (20)

in order to scale the optimal step direction and to guarantee function descent at each iteration.

In general the solution to equation (19) will not be the same as the solution of (17), however they
should be similar enough and due to the simple loss function (MSE) the numerical optimization
is usually much less expensive (Hastie et al. (2009)). In the case of squared error as initial loss
function L, both approaches lead to the same result, since the gradient of L amounts to the residuals
Yi — Frn—1(x)'".

While the intuition of the above procedure is (at least for me) to some extent clear, the subtle
details of gradient descent and Taylor expansions are (at least to me) not that obvious. Thankfully
Sigrist (2021) provides a unifying approach to gradient and Newton (i.e. higher order approxi-
mation) boosting. Furthermore Biau and Cadre (2017) investigate some mathematical aspects of
gradient boosting!! by discussing the optimization principles of two main approaches, which (at
least to me) was very helpful in understanding and unifying existing gradient boosting methodolo-
gies. We briefly discuss the main takeaways from these 2 papers. The main building block is the
Taylor approximation of the empirical loss functional around F, 1

N
Re(F + f) = % ZL(ynFm—l(mi) + f(IL’Z))
=1
1 1
= Llyi Frr (@) + £ (@) G + 5.f (@0)” Honi,

=1

Q

where Gy, ; = %L(yi, Fo_1(x;)) and Hy, ; = aa—;L(yi, F,,—1(x;)). The gradient G and the Hessian
H in this context are treated as simple derivatives of the functional U(F') = L(y, F'), and then
evaluated at each ;. Each G; and H; is thus merely a scalar. The mathematical justification for
that is given in more detail by Sigrist (2021). Equation (21) shows the Taylor approximation of
order 2, which is used for newton boosting algorithms. For the classical gradient boosting approach
the second order term is dropped.

9 As pointed out by Friedman any fitting criterion could be used, but least squares offers computational advantages
and, as can be seen by Sigrist, it is from a mathematical point of view very natural.

10Note that the gradient evaluated at Fy,_1(x) for an arbitrary loss function is also sometimes referred to as
pseudo-residuals.

11'While they mainly focus on first order approximation the mathematical details do not change drastically when
considering second order boosting methods.

“Trick”: Gra-
dient/Hessian
in function
space is
treated as 1-
dim derivative!

For gradient descent we thus seek to find

N
m}n % Z L(yi, Frn—1(x;)) + f(2:)Gm i, (22)
i=1

where f is in the class of weak learners. It can be noted, that the only relevant part to optimize is
(the sum of) f(x;)Gp i, however this problem in general does not necessarily has a finite minimum
(Griva et al. (2008)). Thus Sigrist (2021)!? uses a trick and adds a constraint on the norm of f.
The new objective is (omitting the irrelevant parts of the equations)

1y 1 2
m}n - ; J(@i)Gmi + gf(mz)) (23)

which can be expressed equivalently as

N

min L3 (<G — f(@0) 29

! i=1

Thus, this leads to the same procedure as described by Friedman (2001), cp. equation (19).
Newton boosting uses the second order term as well, which leads to the problem (omitting
irrelevant terms)

N
1 1 2
-) P) Hp s
mfln - Z_; f(®)Gmi + Qf(wz) myi
i (25)
Gm,i
Hmﬂ'

1o)
@m;n n ; Hm,z(f(mz)) :
Finding the optimal add on at each iteration thus relates to fitting a weak learner using a weighted
least squares criterion on the negative ratio of gradient to Hessian, weighted by H;. This Newton
boosting approach in essence leads to the same procedure as used by Chen and Guestrin (2016)
for their XGBoost algorithm. The somewhat only difference is that they do not use weighted least
squares but directly optimize the loss function. Since they are using tree models, this however is
equivalent, that is, for tree modelling, estimation via weighted least squares is the same as just
using a least squares criterion.

A Note on Decision Trees

As advocated by Hastie et al. (2009) (chapter 10.7), decision or regression trees are a very attractive
choice for using in combination with gradient boosting, i.e. for usage as weak learners. Often also
referred to as “off-the-shelf” method, trees fulfills a few desiderata for data mining and machine
learning methods: they are able to handle combinations of datatypes (continuous, binary, cate-
gorical data), they are able to handle missing values naturally, they are interpretable and finally
they are to some extend computationally inexpensive. The latter however only holds when using
heuristics to grow a tree. While optimizing along the whole space of trees is usually infeasible, a
greedy approach is employed which leads to fast tree growing, at the cost of only obtaining sub-
optimal trees. As a result of the off-the-shelf properties of trees, there is no need for tedious data
preprocessing steps, scaling or transforming the data. Furthermore trees are resistant to predic-
tor outliers and perform feature selection, omitting the inclusion of irrelevant predictors. Finally
another advantage is the interpretability of these models (Hastie et al. (2009)). However there is
one main disadvantage, which prevents them from being the optimal tool for predictive modelling,
namely their variance'. That is, the tree is likely to overfit to training data and thus not generalize
well to unseen data. In other words , a small change in the data can cause a large change in the

12Similarly Biau and Cadre (2017) norms the gradient to provide a solution.
13 This is also referred to as instability in Hastie et al. (see section 9.2.4. at the end).

Maybe provide
more Info on
Bias-Variance
tradeoff here!

final estimated tree (James et al. (2021)). This is where the combination of decision trees with
boosting has the most effect. It drastically improves accuracy of the model while maintaining most
of the desired off-the-shelf properties'4.

We mainly follow Hastie et al. (2009) and briefly describe the fitting (or growing) of trees. A tree
divides each training example & into distinct non overlapping regions, producing high-dimensional
rectangles'®. Mathematically it is typically written as a step function in the following form.

J
F@) =Y " vil(acr,}- (26)
=1

Thus the goal is to find a partition Ry, ..., Ry and coefficients 71, ...,y such that the function f
minimizes some specific loss criterion. For regression trees the usual criterion is the square error,
i.e. minimizing Z(yi — f(x;))?, for classification trees usually the misclassification rate is used.
Thus in essence one tries to find

J
arg@l)rninz Z L(yi,;), (27)

j=lx;€ER;

where © = {ijRj}}]:y Solving this problem for any partition is typically infeasible and thus
a greedy top down approach is typically employed, leading to a suboptimal solution. Given the
regions R; the estimation of v; is usually easy, for squared error loss it is simply the average of
all examples falling into region R;, for misclassification error it is the majority class in region R;.
The derivation of the Regions R; however is the tricky part, where a greedy approach is necessary.
Typically the idea is used is termed recursive binary splitting, where first a splitting variable x; and
a split point s is determined, and the example space is split into two regions Ry (;) = {x|z; < s}
and Ry ;) = {x|r; > s}. The splitting variable z; as well as the cutpoint s are not chosen
arbitrarily but rather such that they minimize the equation

Yo Lwodr)+ >, Ly Am.), (28)

i, € Ry i:x; ERo

where 4, are the estimates for v in region R;. Note that we have used a loss function L which is
not necessary the same as the original L, that is the loss for determining the v can sometimes be
different from the loss for estimating the regions R;. This is especially done in the classification
case where the misclassification error is replaced by a smoother loss function such as the Gini index
or cross entropy. The greedy step from equation (28) is then repeated for each subregion R; and
Ry, i.e. for each R;, i = 1,2, we again split it into two regions using the best splitting variable
x;, and s; for the particular region R;. This process is then continued until a specified stopping
criterion is reached, e.g. until no region contains more than c¢ observations, where ¢ is a tuning
parameter (James et al. (2021)).

As noted by Hastie et al. (2009) and James et al. (2021), the above procedure might lead to a
very large an complex tree, which might overfit the training data. To cite James et al. (2021): “A
smaller tree with fewer splits might lead to lower variance and better interpretation at the cost of
a little bias”. An easy but ineffective strategy would be to build the tree until the loss reduction
is high enough, i.e. exceeds some predefined threshold. However a seemingly worthless split might
subsequently lead to a very effective spit (Hastie et al. (2009)).

The go-to approach in this case is cost-complexity-pruning. The strategy is to initially grow a
big tree Ty, and then prune it back in order to obtain a smaller subtree. In a nutshell, the idea is
to minimize the cost-complexity criterion

7|

Ca(T) =Y Qu(T) +alT|, (29)

14The main sacrifice of boosting trees is the loss of interpretability.
151In two dimension this can be nicely visualized, see Hastie et al..

Bias-Variance

tradeoft,
also above.

see

where |T'| is the number of (final) nodes in the subtree T of the initial big tree Ty (the size of the
tree), « is a tuning parameter that governs the tradeoff between tree size and its goodness of fit
to the data and @,,(T) is the error in Node m (e.g. for squared error Y, _p (yi —Ym)?). Thus
the tree T, which minimized equation (29) is used for prediction instead of Ty. The parameter «
is usually determined via cross validation (see also algorithm 8.1. from James et al. (2021), page
309).

The Classical Implementation (Friedman (2001))

In principle Friedman provides an generic algorithm for pure gradient boosting which is in essence
described above (cp. equation (19) and (20)). However in his paper, he also provides specific use
cases, especially focusing on trees as base learners. Furthermore their adoption of the Adaboost
algorithm in Friedman et al. (2000) actually uses a hybrid gradient-Newton algorithm (cf. Sigrist
(2021)). In this section we present some specifics of the implementations from the famous Friedman
(2001) paper.

XGBoost (Chen and Guestrin (2016))
Extensions to Gradient Boosting

Accelerated Gradient Boosting (AGB, Biau et al. (2018))
Grabit (Sigrist and Hirnschall (2019))

10

Maybe add Al-

gorithm here

References

[1] Biau, G. and Cadre, B. (2017). Optimization by gradient boosting.
[2] Biau, G., Cadre, B., and Rouviere, L. (2018). Accelerated gradient boosting.

[3] Chen, T. and Guestrin, C. (2016). XGBoost. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. ACM.

[4] Freund, Y. (1995). Boosting a weak learning algorithm by majority. Information and Compu-
tation, 121(2):256-285.

[5] Freund, Y. and Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning
and an application to boosting. Journal of Computer and System Sciences, 55(1):119-139.

[6] Friedman, J., Hastie, T., and Tibshirani, R. (2000). Additive logistic regression: a statistical
view of boosting (With discussion and a rejoinder by the authors). The Annals of Statistics,
28(2):337 - 407.

[7] Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. The
Annals of Statistics, 29(5):1189 — 1232.

[8] Friedman, J. H. (2002). Stochastic gradient boosting. Computational Statistics € Data Analysis,
38(4):367-378. Nonlinear Methods and Data Mining.

[9] Greenwell, B., Boehmke, B., Cunningham, J., and Developers, G. (2020). gbm: Generalized
Boosted Regression Models. R package version 2.1.8.

[10] Griva, I., Nash, S. G., and Sofer, A. (2008). Linear and Nonlinear Optimization (2. ed.).
STAM.

[11] Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistical Learning:
Data Mining, Inference, and Prediction, Second Edition. Springer Series in Statistics. Springer
New York.

[12] James, G., Witten, D., Hastie, T., and Tibshirani, R. (2021). An Introduction to Statistical
Learning: with Applications in R. Springer Texts in Statistics. Springer US.

[13] Mason, L., Baxter, J., Bartlett, P., and Frean, M. (1999). Boosting algorithms as gradient de-
scent. In Solla, S., Leen, T., and M”uller, K., editors, Advances in Neural Information Processing
Systems, volume 12. MIT Press.

[14] Mason, L., Baxter, J., Bartlett, P. L., and Frean, M. (2000). Functional Gradient Techniques
for Combining Hypotheses. In Advances in Large-Margin Classifiers. The MIT Press.

[15] Ridgeway, G. (1999a). Generalization of boosting algorithms and applications of Bayesian
inference for massive datasets. PhD thesis, University of Washington.

[16] Ridgeway, G. (1999b). The state of boosting. Computing Science and Statistics, 31:172-181.
[17] Ridgeway, G. (2007). Generalized boosted models: A guide to the ghm package.

[18] Sigrist, F. (2021). Gradient and newton boosting for classification and regression. Expert
Systems with Applications, 167:114080.

[19] Sigrist, F. and Hirnschall, C. (2019). Grabit: Gradient tree-boosted tobit models for default
prediction. Journal of Banking & Finance, 102:177-192.

11

